
Learning Task-related Strategies from User Data
through Clustering

Mihaela Cocea∗†, George D. Magoulas†
∗School of Computing, University of Portsmouth, Portsmouth, UK

Email: mihaela.cocea@port.ac.uk
†London Knowledge Lab, Birkbeck College, University of London, London, United Kingdom

Email: gmagoulas@dcs.bbk.ac.uk

Abstract—In exploratory learning environments, learners can
use different strategies to solve the same problem. Not all these
strategies, however, are known to the teacher and, even if they
were, they need considerable time and effort to introduce them
in the knowledge base. In this paper we propose a learning
mechanism that extracts strategies from user data and presents
them to the teacher for further authoring. To this end, a
clustering approach is used in which the strategies of learners
are grouped into clusters and the teacher is presented with a
representative strategy for each cluster. The teacher can then
decide whether to store the proposed strategies or to author
them further. This approach allows populating the knowledge
base using user data, thus saving authoring time for the teacher.

Keywords-clustering, learning from user data, exploratory
learning environments

I. INTRODUCTION

Exploratory learning environments (ELEs) present learners
with constructionist activities [1] in which learners vary the
parameters of their constructions/models and observe the im-
plications on the behaviour of their models. ELEs are associ-
ated with the so-called ill-defined domains [2], in which the
problems are less structured and the boundaries between cor-
rect and incorrect approaches to solve a task are not clearcut.
Moreover, problems in these domains are characterised by
having several equally valid solutions. ELEs that are equipped
with guidance and support mechanisms have been proven
to have positive impact on learning when compared with
other structured learning environments [3]. Lack of support,
however, may hinder learning [4] and outstrip the advantages
of ELEs. Therefore, to make ELEs more effective, intelligent
support is needed, despite the difficulties arising from their
open nature.

To address this, [5] proposed a learner modelling mecha-
nism for monitoring learners’ actions when constructing and/or
exploring models by modelling sequences of actions reflecting
different strategies in solving a task. An important problem,
however, remains: only a limited number of strategies are
known in advance and can be introduced by the teacher. In
addition, even if all strategies were known, introducing them
in the knowledge base would take considerable time and effort.
To reduce this time and effort, we propose a mechanism
for learning strategies from user data through clustering in
the context of an ELE for mathematical generalisation called
eXpresser [6], which results in a number of representative

strategies that can be presented to the teacher for further
authoring or storing in the knowledge base.

The next section briefly introduces eXpresser and gives
examples of mathematical generalisation tasks. Section 3
presents the mechanism we propose for learning strategies
from user data. Experimental results using data from a class-
room session are presented in Section 4. Section 5 discusses
the results and concludes the paper.

II. THE EXPLORATORY LEARNING ENVIRONMENT

eXpresser [6] is an ELE for the domain of mathematical
generalisation; it is designed for 11-14 year olds and for
classroom use. The tasks involve building a construction and
deriving an algebraic-like rule from it.

Two typical tasks, ‘pond tiling’ and ‘footpath’ are described
below. ‘Pond tiling’ requires to find a general rule for sur-
rounding any rectangular pond. The construction, several ways
of building it and their corresponding rules are displayed in
Figure 1; the variables w and h refer to the width and the
height of the pond. The ‘footpath’ task requires to build a
construction such as in Figure 2(a) and to find a rule for the
green (lighter colour) tiles in relation to the red (darker) tiles,
i.e. the footpath; some blocks of the construction are expanded
for ease of visualisation; the variable red refers to the number
of red tiles. In these figures, the internal structure of the
constructions has been highlighted for clarity. In eXpresser
all constructions would look the same in the normal course of
the task.

Each construction is called a strategy and is made of several
patterns. For example, the construction in Figure 2(c) is made
of 4 patterns: two green (lighter colour) patterns made of 7
tiles with no gaps between them, which are placed at the top
and the bottom of the construction; one green pattern made
of 4 tiles with gaps of one tile between them, and one red
(darker colour) pattern made of 4 tiles with gaps of one tile
between them.

The strategies above are illustrated using one particular in-
stance for each task, i.e. a ‘pond’ of width 5 and height 3, and
a ‘footpath’ of 3 tiles; however, learners build constructions
of various dimensions corresponding to different instances of
the task. The goal is to build a construction that is general,
i.e. it is correct for any instance of the task. To verify if
their constructions is general, the system allows the learners
to animate their construction by varying the values of the



Fig. 1. ‘Pond tiling’ task, constructions and associated rules.

Fig. 2. ‘Footpath’ task, constructions and associated rules.

variables involved in building the construction (e.g. w and h
for the pond tiling task, and red for the footpath task).

To enable intelligent support while learners work on math-
ematical generalisation tasks, a knowledge base of strategies
(i.e. correct constructions) for each task is needed to diagnose
the students’ progress when solving a task [7]. The next section
outlines our approach for learning these strategies from user
data to reduce the teachers’ effort on authoring.

III. LEARNING STRATEGIES FROM USER DATA THROUGH
CLUSTERING

The proposed mechanism for learning strategies from user
data based on clustering [8] involves several steps, which are
detailed below:

1) Calculate a similarity distance between the constructions
of all users. For this purpose, the constructions are
represented as a sequence of vectors, where each vector
corresponds to a pattern;

2) Create a vector with the distances between the construc-
tions of all users;

3) Perform clustering using the vector from Step 2;
4) Choose a representative for each cluster.
Each pattern is represented as a vector of numerical values

corresponding to the following properties: units, move right,
move down, colour allocations and a group flag. For example,
in Figure 2(b), the pattern that looks like a C-shape with a red
tile in the middle, is represented as the following vector: (3, 2,
0, 15, 3, 1). More specifically, the pattern is repeated 3 times,
for each repetition it moves 2 tiles to the right and 0 down
(i.e. it stays on the horizontal axis), it has 15 green tiles and
3 red tiles, and it is a group because the 5 green tiles in the
form of a C-shape were grouped together with one red tile.
This group which is repeated 3 times is called the basic unit
of a pattern. A pattern, however, does not necessarily need to
be repeated, i.e. a single tile is still a pattern and in this case
the pattern is the same as its basic unit.

A construction typically includes several patterns and is
represented as a sequence of vectors corresponding to the
patterns. Using the example started above, the construction in
Figure 2(b) will be represented as a sequence of 4 vectors:(3,
2, 0, 15, 3, 1), (1, 0, 0, 1, 0, 0), (1, 0, 0, 1, 0, 0) and (1, 0, 0,

1, 0, 0) (the last 3 vectors each correspond to a single green
tile). The sequence is represented in the order in which the
patterns were constructed by the user.

To calculate the similarity between each construction, the
following procedure is used:
Reduce each construction to the smallest instance of the
task by adjusting the values for the units and the colour
allocations. This is necessary because users use different
instances of the task and we are interested in the structural
similarity rather than the exact dimensions of the construction.
The structure of a construction is important because it defines
the strategy used regardless of the instance of the task. The
algorithm for reducing a construction to the smallest instance
of the task for the ‘footpath task’ is given below (Algorithm 1);
some examples are given in the next section. This algorithm
depends on the task and we chose to present the one for
the ‘footpath task’ because the experimental results use data
related to this task.

Algorithm 1 ConstructionResize(Constr)

instance = no of red tiles
for all vectors in Constr do

if the vector contains red tiles then
units = initial units value
allocations = initial colour allocations value
change units value to 1
change colour allocations value to allocations/units

end if
if the vector does not contain red tiles then

if units value 6= 1 then
units = initial units value
allocations = initial colour allocations value
change units value to newUnits = units/instance +
remainder(units/instance)
change colour allocations value to allocations/units × newUnits
{allocations/units defines the value of the allocations per unit, which
is then multiplied with the new value for the units}

end if
end if

end for
return Constr

Use a greedy approach to determine the order in which
the vectors are compared. This is important because users
do not construct the patterns in their construction in the same
order even if they use the same strategy. For example, the
construction in Figure 2(c) can be build in 24 different ways.
If the patterns order is ignored, the similarity between 2
constructions using the same strategy would not be accurate



unless the order in which they were build is the same. To avoid
this problem, we use a greedy approach using Algorithm 2
illustrated bellow.

As different constructions have different numbers of vectors,
the first step in Algorithm 2 is to find which is the construc-
tion with the fewer vectors. Let’s consider two constructions
ConstrA and ConstrB, and that ConstrA has fewer vectors,
and more specifically z vectors. The algorithm will return two
ordered constructions of size z. In other words, the ordered
ConstrA has the same z vectors, while the ordered ConstrB
will have its number of vectors capped at z.

To compare the vectors, the Euclidian distance is used: D =√∑6
j=1(αVj

− αWj
)2. V and W are vectors from two users’

constructions (V from ConstrA and W from ConstrB) and
α represents an attribute of the vector, e.g. αVj

stands for the
jth attribute in vector V .

Algorithm 2 Order(Constr1, Constr2)

Find which construction has fewer vectors
ConstrA← construction with the fewer vectors;
ConstrB ← construction with more vectors;
repeat

Compare 1st vector of ConstrA with all vectors of ConstrB and select the
most similar one
Store 1st vector of ConstrA in ConstrX
Store the most similar vector of ConstrB in ConstrY
Remove 1st pattern of ConstrA and the most similar pattern from ConstrB

until ConstrA is empty
return ConstrX , ConstrY

Calculate the similarity between the constructions returned
by Algorithm 2. For this purpose, the following aggregated
measure is used:

Sim =

{
z∑z

i=1
D

if
∑z

i=1D 6= 0

0 if
∑z

i=1D = 0,

where z is the number of vectors in the construction with the
fewer vectors from the two constructions that are compared.
In this way the number of vectors compared is included in the
similarity metrics. As the number of vectors of a strategy is
part of its structure, it is important to have it included in the
similarity metric.

The similarity metric is calculated for all pairs of construc-
tions, i.e. (n − 1) × n/2 pairs, where n is the number of
constructions (which also corresponds to the number of users).

In the next step, a vector Y of length (n − 1) × n/2
is created that includes the distances between
constructions of all users in the following order:
(1, 2), (1, 3), ..., (1, n), (2, 3), ..., (2, n), ..., ..., (n− 1, n). This
vector is then used to perform clustering. For this purpose
Matlab is used and a hierarchical cluster tree is created
using the single linkage algorithm: Z = linkage(Y ).
Clusters are then created based on the natural division in
the data (i.e. no pre-specified number of clusters), using
T = cluster(Z, ‘cutoff’, cutoff), where 0 < cutoff < 2. To
verify the cluster tree, the cophenet(Z, Y ) function is used;
it outputs a value below 1 and its meaning is that its value
should be close to 1 for a high quality solution.

To choose a representative for each cluster the procedure
described in Algorithm 3 is followed. Consequently, the

construction that is most similar to all constructions in the
cluster is chosen as a representative. This approach was used
because unlike other applications where the centroid of a
cluster (the average of all the points in the cluster) is used as
a representative, in our case, the centroid does not reflect the
nature of the task as it would represent a synthetic construction
that none of the users has built.
Algorithm 3 Representative(Cluster)

for all Constructioni in Cluster do
calculate the distance between Constructioni and all other constructions in
Cluster
calculate the average of the distances computed at the previous step

end for
Constr = the construction with the smallest average
return Constr

IV. EXPERIMENTAL RESULTS

The approach presented in the previous section was tested
using data from a classroom session where 18 students used
eXpresser to solve the ‘footpath’ task. Out of the 18 learners,
14 completed a construction while the other 4 did not. This
was verified by matching the learners’ constructions to the
mask of the task. Therefore, our test was performed on 14
constructions, with one construction per user; their distribution
and the corespondent figure references are displayed in Table I.
The learners’ constructions were identified as following the
strategies in Table I by experts in mathematical generalisation.

TABLE I
USER DISTRIBUTION IN TERMS OF STRATEGIES USED

No of users Strategy name Figure reference
6 ‘C’ strategy Figure 2(b)
4 ‘HParallel’ strategy Figure 2(c)
2 ‘VParallel’ strategy Figure 2(d)
1 ‘Squares’ strategy Figure 2(e)
1 Combination of ‘HParallel’ Figure 3

and ‘VParallel’ strategies

Fig. 3. Combination of ‘HParallel’ and ‘VParallel’ strategies.

The first step in our procedure is to reduce all constructions
to the smallest instance of the task. For the ‘footpath’ task
that the learners solved in this session, the smallest instance
corresponds to one red tile. To reduce all constructions to this
instance Algorithm 1 is used. To illustrate how the algorithm
works, we will explain in detail the modifications for the
constructions illustrated in Figure 2(b) and Figure 2(d).

The construction in Figure 2(b) is made of four vectors.
The first one is (3, 2, 0, 15, 3, 1) and it will be modified to
(1, 2, 0, 5, 1, 1). This is done by replacing the initial value
of the units, i.e. 3, with value 1, and by replacing the colour
allocations with 15/3 = 6 and 3/3 = 1, where 15 and 3 are
the initial values of the colour allocations, and the divisor 3 is
the initial value of the units. The other three vectors stay the
same as their units value was already 1.



The construction in Figure 2(d) is made of two vectors,
one that includes red and green tiles and one that has only
green tiles. The vector with the red tiles is modified from (3,
2, 0, 6, 3, 1) to (1, 2, 0, 2, 1, 1) by changing the value of
the units from 3 to 1 and the value of the colour allocations
from 6 and 3, to 6/3 = 2 and 3/3 = 1, respectively. The
vector with only green tiles is modified from (4, 2, 0, 12, 0,
1) to (2, 2, 0, 6, 0, 1). The units are changed from 4 to 2 using
4/3+remainder(4/3) = 1+1 = 2 and the colour allocations
are modified from 12 to 6 using 12/4× 2 = 3× 2 = 6.

The next step is to find the optimal order for comparing
the constructions. For this purpose, Algorithm 2 was used
for all pairs of constructions, i.e. 91 pairs. The next step
was to construct the vector Y which includes the distances
between constructions of all users. This is displayed in Table II
in a matrix format rather than vector format for ease of
visualisation. For the same purpose, the values correspond
to the constructions in the order they were mentioned in
the distribution table (Table I), i.e. the first 6 constructions
follow the ‘C’ strategy, the next 4 follow the ‘HParallel’
strategy, the next 2 follow the ‘VParallel’ strategy, the next one
follows the ‘Squares’ strategy and finally, the last one follows
a combination of ‘HParallel’ and ‘VParallel’ strategies.

A hierarchical cluster tree is created using the single linkage
algorithm: Z = linkage(Y ). A dendogram plot of the binary
cluster tree was generated which is displayed in Figure 4.

Fig. 4. The dendogram of the hierarchical clustering.

The dendogram clearly displays the five categories that were
mentioned in the distribution table, i.e. Table I. To test the
validity of the solution obtained, the cophenet function is
used. This function indicates how the data fits in the structure
suggested by the cluster tree. The value obtained was 0.9182,
which indicates that the data fits the structure well and that
that the solution obtained is of high quality.

The next step is to obtain the clusters. Depending on the
value of cutoff, a different number of clusters is produced.
For example, using the value of 0.5 for cutoff, five clusters
are obtained as displayed in Table III. These five clusters
correspond to the categories presented at the beginning as
identified by experts.

When a value of 0.8 is used for cutoff, four clusters are
obtained. They are displayed in Table IV. The difference from
the previous clustering results is that construction 13 instead of

TABLE III
CLUSTERS USING CUTOFF = 0.5
Cluster number Members
1 13
2 1, 2, 3, 4, 5, 6
3 11, 12
4 14
5 7, 8, 9, 10

constituting a cluster by itself has been attached to the cluster
formed by constructions 7 to 10.

TABLE IV
CLUSTERS USING CUTOFF = 0.8
Cluster number Members
1 1, 2, 3, 4, 5, 6
2 11, 12
3 14
4 7, 8, 9, 10, 13

From a teacher’s point of view the clusters still reflect
the learners’ data. One particular approach (corresponding to
construction 13 and to the ‘Squares’ strategy), however, is
classified as part of a cluster that includes one other approach
(the ‘HParallel’ strategy) that was used by four learners (7 to
10 in our distribution). In other words, if these clusters were
used further and a representative for each cluster is presented
to the teacher, s/he would not be aware of the fact that one
learner has used an approach that is not reflected in the results.
Some would not consider this as a problem, as only one learner
used that approach, therefore, not being representative for the
whole group of learners. On the other hand, it could be argued
that the approach is still a valid one and should be presented
to the teacher and stored in the knowledge base or that the
decision to store it should be left for the teacher to make.
This aspect is further discussed in Section V.

To calculate the representatives for clusters, the minimal
average distance between all constructions within the cluster
is used, as in Algorithm 3. For example in the last situation
with the 4 clusters, the last cluster has the constructions of
users 7, 8, 9, 10 and 13 and the average distances are as
displayed in Table V.

TABLE V
AVERAGE DISTANCES IN CLUSTER 4

Construction Average distance
7 0.0475
8 0.0475
9 0.0475
10 0.0475
13 0.19

Therefore, the representative could be any of the construc-
tions 7, 8, 9 or 10. In fact, users 7, 8, 9 and 10 use the same
strategy, while user 13 uses a different one. This explains why
constructions 7 to 10 have the same average distance to all
other constructions in the cluster.

V. DISCUSSION AND CONCLUSIONS

The experimental results presented above show that the
clustering mechanism performs well, leading to clusters that
are relevant in the context of the task. Depending on the cutoff,
a different number of clusters is obtained and both a lower or a
higher value could be argued as advantageous. The lower value
for the cutoff leads to a higher number of clusters, allowing



TABLE II
THE DISTANCED BETWEEN THE CONSTRUCTIONS OF ALL USERS

2 3 4 5 6 7 8 9 10 11 12 13 14
1 0.00 0.00 0.00 0.00 0.00 0.41 0.41 0.41 0.41 0.67 0.67 0.50 0.67
2 0.00 0.00 0.00 0.00 0.41 0.41 0.41 0.41 0.67 0.67 0.50 0.67
3 0.00 0.00 0.00 0.41 0.41 0.41 0.41 0.67 0.67 0.50 0.67
4 0.00 0.00 0.41 0.41 0.41 0.41 0.67 0.67 0.50 0.67
5 0.00 0.41 0.41 0.41 0.41 0.67 0.67 0.50 0.67
6 0.41 0.41 0.41 0.41 0.67 0.67 0.50 0.67
7 0.00 0.00 0.00 0.42 0.42 0.19 0.47
8 0.00 0.00 0.42 0.42 0.19 0.47
9 0.00 0.42 0.42 0.19 0.47
10 0.42 0.42 0.19 0.47
11 0.00 0.50 0.89
12 0.50 0.89
13 0.50

to distinguish constructions even when only one of that type
has been produced. On the other hand, if there are many such
unique constructions, a higher value for the cutoff will ensure
that fewer clusters are produced and the teacher does not need
to spend time on strategies that are not frequently used by
learners. This issue could be solved by allowing the teacher
to manipulate the value of cutoff, observe the difference in
output, and choose a particular set of results as a starting point
for his/her decision to author the strategies further and/or store
them in the knowledge base.

Besides judging the clusters according to the known distri-
bution of the constructions build by the users, another measure
that validates the results is the cophenet function [9], which
measures how faithfully a dendrogram preserves the pairwise
distances between the original unmodeled data points. The
value that was obtained, i.e. 0.9182, indicates that the data fits
well into the structure suggested by the cluster tree. This value
is independent of the number of clusters and is calculated for
the cluster tree that results from the single linkage algorithm.
Therefore, it is an indication of the quality of the cluster tree
rather than the quality of the different clusters obtained for
different values of cutoff.

The representative of each cluster is calculated using the
minimal average distance, as mentioned in Section III, because
the average of all constructions in the cluster does not make
sense for our particular application. In the experimental results,
most clusters contained only constructions that were built
using the same strategy. For example, when 0.5 was used for
the value of cutoff, five clusters were obtained each with con-
structions following the same strategy, i.e. the construction in
cluster 1 followed the ‘Squares’ strategy, the six constructions
in cluster 2 followed the ‘C’ strategy, the two constructions
in cluster 3 followed the ‘VParallel’ strategy, etc. Similarly,
when using 0.8 for the value of cutoff, three out of the four
clusters were composed of constructions following the same
strategy. The only cluster that had constructions belonging to
more than one strategy was the fourth cluster obtained when
using 0.8 for the value of cutoff, which was used to illustrate
the algorithm for selecting a cluster representative.

The cluster representative is important because it is pre-
sented to the teacher for further authoring or for storing in the
knowledge base. Consequently, in the context of our particular
application, the teacher should be presented with actual con-

structions built by learners rather than the constructions that
were numerically transformed for the purpose of performing
the clustering.

Apart from the fact that the centroids of clusters are not
relevant for our application, there is another aspect that is dif-
ferent in our case compared with other clustering applications.
This refers to the dimensions of the data used for clustering.
Typically, all data points have the same dimensionality. In our
case, however, the data varies in dimensionality, i.e. different
constructions have different numbers of vectors or patterns.
This is due to the domain we are working with and in
particular, to the fact that each generalisation task can be
solved using several different strategies.

The research presented in this paper shows that clustering
can be used to learn strategies from user data, which could
reduce the effort needed from teachers to introduce task-
specific strategies in the knowledge base. Future work includes
developing an interface where the teacher can easily check the
output of the clustering mechanism and try different outputs
by varying the value of cutoff.

REFERENCES

[1] S. Papert, Mindstorms: children, computers and powerful ideas. Basic-
Books, New York, 1993.

[2] C. Lynch, K. Ashley, V. Aleven, and N. Pinkwart, “Defining “ill-
defined domains”; a literature survey,” in Proceedings of the Workshop
on Intelligent Tutoring Systems for Ill-Defined Domains at the 8th ITS
Conference, 2006, pp. 1–10.

[3] T. de Jong and W. R. van Joolingen, “Scientific discovery learning with
computer simulations of conceptual domains,” Review of Educational
Research, vol. 68, no. 2, pp. 179–202, 1998.

[4] P. Kirschner, J. Sweller, and R. E. Clark, “Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist,
discovery, problem-based, experiential and inquiry-based teaching,” Edu-
cational Psychologist, vol. 41, no. 2, pp. 75–86, 2006.

[5] M. Cocea and G. D. Magoulas, “Hybrid model for learner modelling and
feedback prioritisation in exploratory learning,” International Journal of
Hybrid Intelligent Systems, vol. 6, no. 4, pp. 211–230, 2009.

[6] R. Noss, A. Poulovassilis, E. Geraniou, S. Gutierrez-Santos, C. Hoyles,
K. Kahn, G. D. Magoulas, and M. Mavrikis, “The design of a system to
support exploratory learning of algebraic generalisation,” Computers &
Education, vol. 59, no. 1, pp. 63 – 81, 2012.

[7] M. Cocea, S. Gutierrez-Santos, and G. Magoulas, Innovations in Intelli-
gent Machines - 2, ser. Studies in Computational Intelligence. Springer,
Berlin, 2011, vol. 376, ch. Case-based Reasoning Approach to Adaptive
Modelling in Exploratory Learning, pp. 167–184.

[8] C. Romesburg, Cluster Analysis for Researchers. Lulu Press, North
Carolina, 2007.

[9] R. R. Sokal and F. J. Rohlf., “The comparison of dendrograms by
objective methods,” Taxon, vol. 11, pp. 33–40, 1962.


